
One-shot Information Extraction from Document Images using
Neuro-Deductive Program Synthesis

Vishal Sunder
1
, Ashwin Srinivasan

2
, Lovekesh Vig

1
, Gautam Shroff

1
, Rohit Rahul

1

1
TCS Research,

2
BITS Pilani, Goa

s.vishal3@tcs.com,ashwin@goa.bits-pilani.ac.in,lovekesh.vig@tcs.com,gautam.shroff@tcs.com,rohitrahul@tcs.com

ABSTRACT
Our interest in this paper is in meeting a rapidly growing industrial

demand for information extraction from images of documents such

as invoices, bills, receipts etc. In practice users are able to provide a

very small number of example images labeled with the information

that needs to be extracted. We adopt a novel ‘two-level’‘neuro-

deductive’, approach where (a) we use pre-trained deep neural

networks to populate a relational database with facts about each

document-image; and (b) we use a form of deductive reasoning,

related to meta-interpretive learning of transition systems to learn

extraction programs: Given task-specific transitions defined using

the entities and relations identified by the neural detectors and

a small number of instances (usually 1, sometimes 2) of images

and the desired outputs, a resource-bounded meta-interpreter con-

structs proofs for the instance(s) via logical deduction; a set of logic

programs that extract each desired entity is easily synthesized from

such proofs. In most cases a single training example together with a

noisy-clone of itself suffices to learn a program-set that generalizes

well on test documents, at which time the value of each entity is

determined by a majority vote across its program-set. We demon-

strate our two-level neuro-deductive approach on publicly available

datasets (“Patent” and “Doctor’s Bills”) and also describe its use in

a real-life industrial problem.

KEYWORDS
Information Extraction, Document Images, Inductive Logic Pro-

gramming, Meta-Interpretive Learning, Program Synthesis

1 INTRODUCTION
Extraction of information from structured documents has long been

an important problem in the research and application of Information

Retrieval (IR) techniques. A challenging version of this task arises

when the contents of the documents are not already in a structured

database, but are captured as images. In industrial settings, this is

especially common: images of invoices, bills, forms, etc., are readily

available, and information needs to be extracted from them (“What

is the address to which this invoice was sent?”, etc.). The images

can be noisy (captured using a low-quality camera, at a sub-optimal

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

A short version of this paper appears in NeSy’19 @ IJCAI 2019, August 2019, Macau,
China
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

angle, for example), and can even be ambiguous and the information

extraction task is often manually done.

With the rapid advancement of Deep Learning (DL) for computer

vision problems, many DL architectures are available today for

document image understanding ([11], [18], [22], [28]). But like most

DL-based techniques, training these models from scratch is resource

and data intensive. This is a major stumbling block for industrial

problems for which collecting and annotating data incur significant

costs in time and money. In this paper, we use two complementary

forms learning to address this problem:

(1) Neural-learning: Using pre-trained DL models for reading

document images and converting them into a structured

form by populating a predefined database schema.

(2) Deductive-learning: Using the entities and primitive relations

identified by neural-learning, synthesize re-usable logic pro-

grams for extracting entities from a document image, using

proofs constructed by a meta-interpreter in a manner similar

to explanation-based generalization (EBG: [10]), and gener-

alizing the proofs using techniques developed in Inductive

Logic Programming (ILP: [15]).

A schematic overview our approach is given in Fig. 1. The choice

of logic-based EBG for symbolic learning has two attributes that

are of interest to us: (1) EBG methods generalize from a single data

instance (or sometimes just a few) by exploiting strong domain con-

straints (in effect, the constraints act as a prior over possible models

for the data); and (2) The logical models can often be converted

into an (human-)interpretable form. This makes it possible to allow

human intervention, which is important in practice.

The neuro-symbolic learners are used to deploy a one-shot learn-

ing strategy for information extraction from images of documents

of a particular kind (invoices, for example). Given one training

instance, the neural-learning results in a database containing the

objects and relations recognised in the corresponding image. The

symbolic learner than synthesizes a (re-usable) program that can ex-

tract entities from any document of the same kind. Some additional

machinery is needed for tackling outlier cases. We allow human

intervention to make corrections by providing few additional an-

notations (usually just one or two). This is made possible by the

interpretable nature of the output produced by symbolic learning.

Although such cases are few in number, they is an important step

towards building robust “human-in-the-loop” systems ([29]) that

use human expertise to enhance their performance.

This paper makes the following contributions:

(1) It combines deep-learning based image processing and de-

ductive program synthesis to address industrial problems

involving information extraction from document images.

ar
X

iv
:1

90
6.

02
42

7v
1

 [
cs

.A
I]

 6
 J

un
 2

01
9

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Overview of the system

(2) It reports on the implementation of an end-to-end one-shot

learning strategy for synthesizing programs that extract en-

tities from a document image.

(3) It presents a human-in-the-loop based N -shot learning algo-

rithm for extracting entities from document images in when

required due to outlier cases.

These contributions are supported by results on some publicly

available datasets. We also describe, within the constraints allowed,

results on a small proprietary dataset which is nevertheless indica-

tive of the industrial applications of the approach.

The rest of this paper is organized as follows: Section 2 gives

an overview of the DL-based vision stage. Section 3 formalizes

the approach used for program synthesis. Section 4 describes our

one-shot learning technique. It also proposes a human-in-the-loop

based few-shot learning algorithm. Results are then presented and

discussed in Section 5. Section 6 provides a performance analysis

of the results and a few ideas for enhancement and debugging. We

conclude in Section 8.

2 NEURAL LEARNING: IMAGE→ DATABASE
Given a document image, the task of extracting spatial relationships

between different entities in the document and subsequently popu-

lating a database schema is handled by a suite of deep vision APIs

which we shall refer to as the VisionAPI in the rest of the paper.

The VisionAPI comprises of two modules: 1) A Visual detection
and recognition module 2) Spatial-relationship generation module.

2.1 Visual detection and recognition
The job of this module is to locate the bounding boxes around
horizontally aligned text in an image. Post detection, recognition

amounts to inferring the text present in this bounding box via OCR.

2.1.1 Text Detection. For this task, we use state-of-the-art Con-
nectionist Text Proposal Network (CTPN) [26] which is commonly

used for text detection in scene text images. This is a Convolu-

tional Neural Network (CNN) which takes an image as input and

generates text for the given image. The sequence of proposals are

then passed to a Recurrent Neural Network (RNN). This allows the

network to exploit the contextual visual features of continuous text.

The output is in the form of bounding box coordinates around the

text. We use a pretrained version of this network (trained on the

ICDAR 2013 dataset, [9]).

2.1.2 Recognition of Entities. The bounding boxes returned by the

text detection module are then cropped from the input images

and each one of the box is then fed to an OCR module (Optical

Character Recognition). We have used the Google Vision API for

this purpose but in principle any other OCR like Tesseract can

also be used. As a result , we get a string corresponding to the

text that is inferred by the OCR module in the unicode format. For

each word of the string, we apply a data-type detection module

which identifies the abstract data-type of the word. (For example,

< name >, < city >, < date >, < word >, < alphanumeric > etc)

2.2 Identification of Primitive Relations
To generate basic spatial relationships, we exploit the bounding

box coordinates and the corresponding text that we get from the

previous module. In this manner, we generate 17 different relation-

ships each of which come under one of the following categories. (In

principle, one can come up with any number of such relationships

given the bounding box coordinates and the corresponding text.)

(1) Text blocks:We define a textblock as a set of lines which begin

at approximately the same x-coordinate and the vertical

distance between them is not more than twice the height of

the text line (calculated through the coordinates). This yields

relationships which give us the words and lines that are part

of the same text block.

(2) Page lines: A line of text which is horizontally aligned is

defined as a page line. We build a relationship which is a

mapping between a word and the page line in which it occurs.

(3) Above-below: This captures the relationships between lines

and blocks in the vertical direction. We have 4 relation-

ships in this category where for every line and every block,

we have an above and below relationship indicating which

lines/blocks are above or below other lines/blocks .

(4) Left-right: This category is the same as above-below except

that it is in the horizontal direction and has additional rela-

tionships between words.

(5) Substring: For a line/block, we have a relationship which

maps every pair of words in that line/block to the substring

between the pair. To account for multiple occurrences of

word pairs, we assign a unique index to it.

(6) Datatype: Similar to substring except that here, instead of

word pairs we use datatype pairs.

A tabulation of the relations found by the neural-learner is in

Table 1, which define the domain theory for program synthesis. (A

more detailed explanation of the deep-learning techniques used in

the VisionAPI can be found in [20].)

3 DEDUCTION: DATABASE→ PROGRAMS
The task of the deductive stage is to automatically construct a

programmatic mechanism to extract entities from the database

2

text_blocks_master, page_lines_master
lines_below_block_word, word_in_line

above_block, below_block
above_line, below_line

word_right_left, right_block
left_block, right_line

left_line, block_to_substring
block_to_substring_dtype, line_to_substring

line_to_substring_dtype

Table 1: Primitive relations obtained from the VisionAPI.

populated by the neural learner, for all documents in the same

template-class of ‘similar’ documents.

Deductive program synthesis can be seen as a form of Explanation-

Based Generalization (EBG) [10]. Although EBG was originally for-

mulated for concept learning, here the goal is to identify programs

that implement functions. Given a training example e that identifies
the output(s) O from some input image I , the task is to identify a

program that is sufficient to compute O from I , given B. Concep-
tually, this is done in two steps: (a) A proof is constructed for the

computation of O from I , given B; and (b) The proof is generalised
to obtain a (re-usable) program.

In this paper, we adopt the representation of logic programs for

B: In our case B consists of (Prolog) rules defined using the primitive

relations in the database populated by the neural learning stage (1).

Example 3.1. Here are two background definitions (in Prolog syn-
tax) for an “invoice” template, that use the primitive relations identi-
fied by the VisionAPI.
has_keyword(Word,[In],[In,LineId,WordId]):-

word_in_line(In,_,_,_,LineId,Word,WordId).

left_of(RWord,[In,LineId,RWordId],[In,LineId,LWordId]):-
word_right_left(In,_,LWord,LType,LWordId,RWord,RType,RId),
word_in_line(In,_,LType,_,LineId,LWord,LWordId),
word_in_line(In,_,RType,_,LineId,RWord,RWordId).

The first rule definition looks for a word Word in the word_in_line
relation and returns its WordId and the LineId of the line its con-
tained in. The second rule definition returns the LWordId of the word
to the left of RWord.

For the computational system we use the operational semantics

of a transition system (in the sense identified by Plotkin in [19]).

Definition 3.2. (Transition system) A logic program defining
a simple transition system T is:

ts((C,C))←
ts((Ci,C f))←
trans(T ,Ci,C),
ts((C,C f))

As defined above, the transition system can compute indefinitely,

and in practice, we impose a bound on the computation, by includ-

ing a depth-limit. The C’s are used to denote configurations that
can be more general than states. With this definition a training

examplev is then a simply a specification of a specific input-output

configuration pair ts((i,o)), where i is a document, in which the

value of the desired entity e is o.

Remark 3.3. (Transition Systems andMeta-interpretation)
A depth-bounded version of the transition system, Td can be readily
implemented as a logic program (shown here as a Prolog program):

ts((Ci,Cf),D):-
D = 1,
trans(T,Ci,Cf).

ts((Ci,Cf),D):-
D > 1,
trans(T,Ci,C),
D1 is D - 1,
ts((C,Cf),D1).

Given this definition, a depth-bound d and a domain-theory B
consisting of definitions of trans/3 predicates, We will say a depth-

bounded explanation exists for v = ts((i,o)) if a Prolog interpreter
is able to prove e using SLD-resolution and denote this by:

B ∧Td ⊢ v

In [10], a simple modification of the usual Prolog interpreter is

described that allows a retention of the proof-tree. The modification

employs additional clauses BM for proving Prolog clauses, and:

(BM ∧ B ∧Td ⊢ prove(v, P)) ≡ (B ∧Td ⊢ v)

Here,prove(e, P) denotes “e can be proved using P” .Wewill call BM
a meta-interpreter for clauses in B ∧Td , and P as the set of literals

that are TRUE in a meta-interpretive proof for v (the elements of

P are obtained from the goals, or negated literals, that resolve in a

refutation-proof for v).
Programs are constructed by generalising the literals obtained

in a meta-interpretive proof.

Example 3.4. A fragment of a document image is shown below:

From such images we want to extract the reference number for

correspondence. The neural-learner extracts primitive entities and

relations as Prolog facts. The training instance provided to the pro-

gram synthesis stage is the input-output pair ([d1], [186FDBC1802472]),
where d1 is the identifier of the image above. Program synthesis

then is the result of the following steps:

(1) A meta-interpretive proof P for ts(([d1], [186FDBC1802472])
consists of the set of ground literals:

{trans(has_keyword(′Please ′), [d1], [d1, loc1]),
has_line_below([d1, loc1], [186FDBC1802472]}

(2) The literals in P are used construct a ground clause G (this

is the “explanation” step):

ts(([d1], [186FDBC1802472]))←
has_keyword(′Please ′), [d1], [d1, loc1])
has_line_below_word([d1, loc1], [186FDBC1802472])

(3) The ground clause is generalised and with some trivial re-

naming, resulting in the final program definition (this is the

“generalization” step):

3

corr(A,B) :-
has_keyword('Please', A,C),
has_line_below(C,B).

Given domain constraints B, there can be many proofs and corre-

sponding programs, for each training examplev for a desired entity

e . Meta-interpretive program synthesis, referred to from here on as

MIP (D,B,v), returns a set of programs to extract the value of the

entity e from the database D populated by the neural learner. As we

shall argue and demonstrate below, the same set of programs can

also be used to extract the value of e from other similar documents.

In generalMIP (D,B,v) produces a number of programs given a

single training instance, thus raising the difficulty of choice. One

way to address that may reduce the number of possible explana-

tions is to provide more examples, that add more constraints (we

seek an explanation now for all the examples). Traditionally, EBG

has prefered the specification of some extra-logical criterion for

selection amongst multiple explanations. In an industrial setting,

both of these options translate to requiring high-cost expertise. We

describe next a one-shot learning with a form of “re-sampling” that

is surprisingly effective.

4 ONE-SHOT LEARNING: NOISY CLONING
In general, providing more than one training instance should result

in programs that is in some sense “more general”. Since our task

is to extract entities in any document in a template-class (and not

just one document in the class), it is important that the program

synthesized applies to as many documents as possible in the class

(we will discuss outliers later).

Example 4.1. An unsatisfactory program for extracting the num-
ber for correspondence is the one below:

corr(A,B) :-
has_keyword('Please',A,C),
left_of('Please',C,D),
right_of('ASA',D,C),
has_line_below_word(C,B).

The program has unnecessary conditions left_of and right_of.
It also uses the keyword ’ASA’ which is part of the address to the
left of the correspondence number. The address will change in other
documents rendering the program incorrect for these.

One way of correcting the result of program synthesis is to

keep adding example-pairs until the programs become correct. This

method is data intensive and one would need to annotate multiple

documents of a given template. Instead, we create additional ex-

amples automatically by “noisy cloning”, that is shown later to be

surprisingly effective in practice.

A document d ′ is a noisy clone of a document d , if:

(1) d and d ′ have the same template; and

(2) d and d ′ have the same entities, but each entity in d has a

different value to the entity in d ′

Given a document d , we can obtain a noisy clone d ′ by simply

altering the values of all its entities. This can be seen as a form of

re-sampling with noise added to all entity values in d , resulting
in two documents. Provided the the entity to be extracted from d

Algorithm 1 TrainOS(A, Itrain , B)

Given: (1) A training example e consisting of a document image,

Itrain and the corresponding annotation, A form entities of that

document; (2) A database D; and (3) Domain rules and facts B
defined based on the database schema.

Find: A set of programs P for all the entities.

1: Populate the database D = VisionAPI (Itrain)
2: for all (fi ,vtraini) ∈ A do

3: Create a noisy clone,
�vtraini

4: end for
5: Create a noisy copy, D̃ for D by replacing vtraini with

�vtraini
in F .

6: for i := 1 tom do
7: Get a set of ni programs,

ni⋃
j=1

p
j
i := MIP (D,B,vtraini)

⋂
MIP (D̃,B,�vtraini)

8: end for
9: Return P :=

m⋃
i=1

ni⋃
j=1

p
j
i

occurs only once in d , this form of re-sampling can assist in gener-

alising programs identified using a single example. We propose two

different procedures for program synthesis using few-shot learning:

4.0.1 TrainOS. Algorithm 1 corresponds to the TrainOS algorithm
(corresponds to Train One-Shot) which requires just one document

image, Itrain and an annotation for all entities in that document,

{(fi ,vtraini)}mi=1 to find programs for all entities (m of them) in the

corresponding document template. Here, (fi ,v
train
i) corresponds

to the ith entity-value pair. Given this annotation, we add some

noise to each of the entity values and create a noisy counterpart

which is then used as a second “training” instance.

Thus, we get two training examples corresponding to the training

document and its noisy counterpart. Completing the proofs for

these two examples and then taking the intersection for the two sets

of logical programs that follow is equivalent to finding programs

which can extract entities from both the documents.

4.0.2 TrainNS. One of the instances where the TrainOS fails to

produce generalized programs are for entity values that occur at

multiple locations in the document. In such scenarios, it becomes

impossible for the system to disambiguate between these locations

to get the actual position of the entity. The actual position of the

entity may include all the positions where it occurs in the training

document or just a subset of these positions. Figure 2 shows an

example of such a situation. Notice that in figure 2a the date appears

in three different locations. The actual position of the entity “date”

is not evident from only this document. All three or less may be the

actual location of this entity. But running the TrainOS algorithm

would be assuming that the same entity always occurs at three

different locations for any document of this template.

The only way to clear this ambiguity is to provide another docu-

ment with an annotation for the corresponding entity. Figure 2b

shows another example of the same template. This example clearly

disambiguates between the three locations as now we are sure that

the first location corresponds to a different entity. We are still not

4

(a) The 3 dates marked in oval are same for this document.
(b) The 2 dates marked in oval are the same but the one marked in the
rectange is different.

Figure 2: Location ambiguity

sure about the other two locations but giving more documents to

the meta-interpreter will solve this issue.

We facilitate this by modifying the TrainOS algorithm to incor-

porate a “human-in-the-loop” approach, where a human is asked

to annotate another document from a set, l of supplementary docu-

ments (Isupp =

l⋃
i=1

Ii) whenever an entity occurs more than once.

Therefore, until there is complete disambiguity in the entity loca-

tions, a human will be asked to feed in more annotated documents.

Note that this annotation is done only for the one, ambiguous en-

tity. If the human annotates k different documents (0 ⩽ k ⩽ l)
and these documents are also used for training (i.e. each document

corresponds to an additional training instance), line 7 of algorithm 1

becomes:

ni⋃
j=1

p
j
i := (

k⋂
o=1

MIP (Do ,B,v
o
i)

⋂
MIP (D,B,vtraini)⋂

MIP (D̃,B,�vtraini)) (1)

Here, each annotated document, o will correspond to an additional

document Do .

We call this extension of TrainOS algorithm the TrainNS algo-
rithm (corresponds to Train N-Shot).

4.1 Entity extraction
Once we get the programs for all entities in a document template,

we extract an entity from a new document (not used for training)

using algorithm 2.

For the ith entity fi in a document template, we get ni different
programs. We run each of these programs and store their outputs.

After this, a majority voting technique is used wherein we take

the most frequently produced output as the correct output. If the

most frequent output is “NULL” (which may happen in case a

program does not return anything), then we consider the second

most frequent output as correct.

5 RESULTS
We use the following publically available datasets for testing our

system and benchmarking results:

Algorithm 2 Extraction(Itest , P , fi)

Input: A document image, Itest , the set of all programs P obtained

for the corresponding template and the entity to be extracted fi .
Output: The entity value vtesti corresponding to fi .

1: Populate the database D = VisionAPI (Itest).

2: for all p ji ∈ P do
3: oj := p

j
i (fi)

4: end for

5: Get the set of distinct outputs,

K⋃
j=1

ok from

ni⋃
j=1

oj sorted by their

frequency of occurance (decreasing order). Here, K ⩽ ni .
6: if o1 = NULL then
7: vtesti := o2
8: else
9: vtesti := o1
10: end if
11: Return vtesti

(1) Doctor’s Bills dataset: This dataset is a collection of invoices

for medical bills ([27]). It comprises of two different tem-

plates which we call Doctor-1 and Doctor-2 that have a total

of 50 and 40 documents respectively. For each template, we

keep aside 5 documents in the training pool and the rest for

testing. We do manual annotation for each of the templates

and mark 8 entities for Doctor-1 and 9 entities for Doctor-2

which are to be extracted.

(2) Patent dataset: This dataset is a part of the Ghega dataset [13].
It comprises of 136 patent forms from 10 different templates

with annotations for different entities. For 8 of the templates,

we keep 3 documents in the training pool and the rest for

testing. We use 2 and 1 document(s) in the training pool

respectively for two other templates as they contained a

very few documents.

Figure 4 shows a document sample for each type.

We select a document from the training pool for one-shot learn-

ing and the rest for use as supplementary documents for running

TrainNS algorithm. This is done multiple times such that each doc-

ument in the training pool is used in one-shot learning once. The

average extraction accuracy for every entity is reported in table 2.

5

Doctor-1 Doctor-2 Patent
Entity name TrainOS TrainNS Entity name TrainOS TrainNS Entity name TrainOS TrainNS

Date-1 91.00 91.00 (0) Date-1 81.71 100.00 (1) Classification No. 77.67 77.67 (0)

Date-2 91.11 91.11 (0) Date-2 58.28 90.00 (2) Abstract 68.50 68.50 (0)

Amount-1 85.33 85.33 (0) Amount 80.00 100.00 (1) Applicants name 86.67 86.67 (0)

Amount-2 60.40 100.00 (2) Invoice no. 100.00 100.00 (0) Application No. 77.50 77.50 (0)

Patient name 92.00 92.00 (0) Patient name 100.00 100.00 (0) Representative 74.33 74.33 (0)

Patient address 97.78 97.78 (0) Patient address 100.00 100.00 (0) Title 78.25 78.25 (0)

Diagnosis 100.00 100.00 (0) Diagnosis 79.43 79.43 (0) Publication date 81.30 81.30 (0)

Ref. no. 100.00 100.00 (0) VNR no. 100 100 (0) Inventors name 83.33 83.33 (0)

NA NA NA DOB 100 100 (0) Filing date 70.00 70.00 (0)

Table 2: Entity extraction accuracy on 3 different public datasets (in %) for TrainOS and TrainNS approaches for program
generation. The number in brackets gives the number of supplementary documents (on average) required.

Entity name TrainOS
Account no. 100.00

Addressee 100.00

Amount 100.00

Contract no. 100.00

Correspondence no. 100.00

Drawee 100.00

Drawer 100.00

Tenor 67.67

Table 3: Extraction accuracy (in %) on proprietary data.

From the results, it is clear that for most entities (entities for

which the TrainNS algorithm requires 0 supplementary documents

to be annotated), TrainOS algorithm is sufficient to obtain good

extraction accuracies. For the cases where TrainNS algorithm gives

better results, notice that the difference between extraction accu-

racies of TrainNS and TrainOS quite high (as high as 40%). This is

evidencial of the fact that location ambiguity is indeed a significant

problem and the TrainNS algorithm alleviates this to a large extent.

Also, note that even for such cases, the human had to annotate no

more that 2 documents from a supplementary document pool size

of 4 which cannot be considered a big overhead.

Although a good amount of work has been done to solve the

problem of information extraction from document images, results

by most of them are on proprietary documents which makes it

impossible to test our method against a baseline. To the best of our

knowledge, there is only one benchmarking results available on

the Patent dataset by Ref. [13] who use a probabilistic approach to

solve the problem. Their task is slightly different from ours in that

they detect the bounding box sequence for a given entity whereas

we extract the exact value of the entity. Using one document, they

report the average success-rate to be 50% whereas our one-shot

method obtains an average accuracy of 77%. (However, with 14

documents though, they achieve a success-rate of 90% in their task

of bounding-box detection).

Table 4 gives three examples of programs generated for Doctor-

2 template and their interpretations. Each step of a program is

completely interpretable unlike the intermediate steps (layers) in a

Figure 3: Effect of increasing training size on performance.

deep neural network. This makes debugging of the system fairly

simple which is of prime importance in any real-world deployment.

As an evidence of real-world application of our system, we also

give results on one proprietary document template in table 3. For

this, we were given just one document for training and testing was

done on three other documents of the same template. Note that we

do not give results for the TrainNS approach as we had just one

document for training.

6 PERFORMANCE ANALYSIS
We do a two-part analysis of our system performance. The first part

pertains to the effect of the number of training documents on three

different performance metrics. In the second part, an error analysis

is done.

6

Program Interpretation
date1(A,B):- get_blockid(‘Diagnosen’,A,C), C = The block with the word “Diagnosen”

get_block_above(0,C,D), D = The block above C with index 0

get_substring(‘Rechnungsdatum’,‘Bitte’,1,D,B). B = Output (String in D between the two words in args)

diagnosis(A,B):- get_line(‘Diagnosen’,A,C), C = The line with the word “Diagnosen”

get_keyword(‘<medical_term>’,C,B). B = Output (String in C which is a medical term)

ref(A,B):- word_to_left(‘Rechnungsdatum’,A,B). B = Output (Word to the left of ‘Rechnungsdatum’)

Table 4: Examples of programs generated by the meta-interpreter.

(a) Doctor-1 (b) Doctor-2 (c) Patent

Figure 4: Sample document images

6.1 Effect of training size
As explained in section 4, the meta-interpreter has a potential to

produce more generalised programs if more training examples are

used to generate the programs. In other words, if the number of

training documents are increased, we can expect the performance

to get better. Thus, we experimented with this idea by providing the

meta-interpreter with as high as 5 documents for training on the

doctor’s bills dataset (as we found that this has more documents per

template compared to the patent dataset) and evaluated its perfor-

mance on three metrics. We used all combinations of n documents

(1 ≤ n ≤ 5) and the average of their performance on the test set is

shown in figure 3.

(1) Extraction accuracy: This is the percentage of times the cor-

rect output is extracted. The extraction follows algorithm

2. The first plot of figure 3 shows this performance and it is

clear from this plot that providing more training examples

indeed makes the performance better. Also note that the

extraction accuracy of the TrainNS algorithm is very close

in performance to the best possible performance.

(2) Number of programs generated and correctness: Correctness
is the fraction of programs that give the correct output and

its variation with training size is given in the third plot of

figure 3. As we increase the training size, the number of

programs generated by the meta-interpreter tends to fall

rapidly as shown by the second plot of figure 3. This is a

consequence of the fact that as the training size increases, the

meta-interpreter produces only the most general programs

and hence the correctness score also increases.

Note from the plot that both the TrainOS and TrainNS algorithms

produce some non-general programs (their correctness values being

close to 0.5 and 0.6 respectively). This we observed is because there

are almost always some differences in the documents even within

the same template. These differences may either be due to some

noisy images or due to some minor formatting variations in the

documents which effect the output of the VisionAPI. Introducing

noise in such cases is not a complete solution for non-generality as

the observation mentioned in section 4 holds true for documents

of the same template.

We observed that the extraction accuracy and the correctness

curves of figure 3 reach a plateau as the number of training docu-

ments increase and in fact for some combination of the 5 documents,

there is a dip in these scores. This, we observe is because as the

number of documents increase, there is a high probability that at

least one of the documents is noisy. When this happens, it becomes

impossible for the meta-interpreter to come up with programs that

work for both the noisy and the non-noisy training instances.

7

Figure 5: Variation of entropy of different output distribu-
tions for correct and incorrect extractions.

Also note that there is a vast improvement in the correctness

score when using just one document for training versus using

TrainOS algorithm. This suggests that one-shot learning by using a

noisy clone does improve performance (an absolute improvement

as high as 0.5 on the correctness score) by narrowing down the

output to the most general programs.

6.2 Error analysis
6.2.1 Source of errors. We observe that most of the errors in the

extraction of an entity by one-shot learning is due to one of the

following reasons:

(1) Ambiguity in entity location: These errors are mostly tack-

led when we use supplementary documents and run the

TrainNS algorithm. This is evidenced in table 2 for cases

where TrainNS accuracy is higher than TrainOS.

(2) Inconsistencies in the output of the VisionAPI: As discussed
before, these errors occur when a test image is either noisy

or there are some formatting differences in the training and

testing images. In such cases, we essentially have different

templates during train and test time. Such errors have to be

fixed by making the VisionAPI more robust which can be an

interesting direction for future work.

6.2.2 Erroneous outputs are identifiable. Any deployable system

needs to be such that its debugging does not produce overheads.

Hence, it is of prime importance that a failure instance is identifiable.

In our case, these instances fall into one of the two categories: (1)
No output extracted (2) Wrong output extracted. From a dubugging

point of view, errors that fall into category (1) are more desirable

than (2). But we find the even the instances that produce a wrong

output are identifiable to some extent.

For this, we calculate the entropy of the distribution over all

distinct outputs produced by the programs for the cases when the

extraction is either correct or incorrect but not for the cases when

there is no extraction. This is done for every entity in the doctor’s

dataset and we show the plot for this in figure 5. From this, we

can clearly see that for correct output cases, the entropy values are

always lower suggesting a more sparse distribution over the distinct

outputs. Also, for every entity there is a visible difference between

entropies of correct and incorrect predictions which suggests that

using a suitable threshold for the entropy, incorrect extractions can

be identified.

7 RELATEDWORK
Information Extraction from documents is a well established and

explored field and a large body of work is available for this do-

main. But most of these works have focussed on structured or

semi-structured documents rather than on document images. One

such system is the RAPIER system [14] which induces a pattern-

match for entities using relational learning. This method is similar

to ILP but is more constrained in terms of the rules it generates

as it uses a slot-filling framework. On the other hand, our method

works on document images and is diverse as it generates programs

which, in principle, may use any number of spatial relationships.

Another similar system is WHISK [25] which learns regular ex-

pression like rules to extract patterns and like RAPIER, it works

on semi-structured text rather than on document images. Effective

extraction techniques have been proposed using shallow domain

knowledge like in Ref. [4]. They introduce the (LP)2 system which

uses some domain knowledge to insert SGML tags on relevant enti-

ties. It then uses a correction mechanism to fine-tune the results.

In constrast, our proposed method does not require any domain

knowledge except the information in the documents themselves.

Efficiently extracting information from document images has

been of some interest mainly for industrial applications. Ref. [7]

have developed a system by graphically modeling relationships

between words in the form of document models. They also use

a predefined set of keywords and document models. Another ap-

proach particularly for templatized documents has been of learning

a spatial structure from one part of a document and using this to

extract entities from some other part [3]. A method similar to ours,

that uses a single document example to learn about spatial relations

is proposed in Ref. [23]. This method represents word relations

using a continuous polar coordinate system and rely on these for

indexing different entities. This makes it sensitive to minor spatial

variations. Another such real-world system is Intellix [24]. This

system uses categorization of entities based on position and context

to come up with rules for extraction. Most of these works, to the

best of our knowledge, do not benchmark results on public datasets

which makes it difficult to validate results.

A reader familiar with Inductive Logic Programming (ILP) will

find a relationship of our program synthesis approach to the tech-

niques used there. This is not surprising, and EBG was shown to

be a special case of ILP in [15] given a single example. The rela-

tionship to ILP extends, albeit more tenuously, to recent work on

meta-interpretive learning (MIL) in that field. In MIL, proofs con-

structed by a meta-interpreter using meta-rules in a higher-order

logic are used to instantiate first-order logic programs. Computa-

tion of outputs from inputs can be seen as repeated applications of

one or more meta-rules, instantiated appropriately with predicates

and terms from B. Both standard ILP and MIL systems are more

powerful (and complex to use) than what is needed for our purpose.

8

Logic programming is used by Ref. [1] to characterize the geo-

metric properties of text units to reason over relationships between

parts of a document. This approach is used in document under-

standing context. MIL ([16],[17]) has regained popularity in the

recent past primarily because of its high interpretability and data ef-

ficiency. MIL has even proved to be much more robust as compared

to many deep learning methods for certain applications in vision

domain ([6],[5]). A particularly popular recent successful applica-

tion of MIL in the one-shot learning context has been reported in

Ref. [12] where the authors replicate results of Microsoft’s Flashfill

by using one-shot MIL.

ILP for Information Extraction has also been explored in the past

by Ref. [21] who have use ILP for extracting useful features. These

features are then used to train machine learning models like SVM.

It has been shown that ILP can come up with features that have

exploitable signals to be used by the SVM. Another work which

uses ILP for IE ([8]) defines only three primitive predicates and

uses a seperate and conquer strategy to come up with rules for

extraction. There is an underlying assumption in this approach

that a document is a list of words. This makes it unsuitable in

domains where two dimensional relationships between words are

important as in templatized documents like invoices and forms.

Our system incorporates relations like “above”, “below” etc. and

uses meta-interpretive program synthesis which makes it novel.

Ourwork extends thework in Ref. [2] in the followingways. First,

it shows that meta-interpretive learning of transition systems can

be used beyond the biological domain used in that paper. Further,

unlike in [2], we do not allow invention of new transitions, and our

transition system is not probabilistic.

8 CONCLUSION
In this paper, we presented a new approach for synthesizing pro-

grams that extract information from document images. To the best

of our knowledge, this is the first attempt in combining Deep Learn-

ing based computer vision APIs with a Meta-Interpretive Learning

based framework. Our approach is highly data efficient and in most

cases requires just one document image to generalize well while

requiring no more than three for a few cases. This is evidenced

by results given on publically available datasets which can serve

as a benchmark for future work. One-shot learning is highly in-

dispensible in industrial scenarios where there is a limit on the

proprietary documents that one can use for training modern deep

learning based models. We have also shown that with the intro-

duction of a few documents, our system can reach near perfect

performance which is a direct consequence of using an Inductive

Logic Programming (ILP) based approach for program synthesis.

Furthermore, after thorough analysis of the results, we conclude

that there is still a lot of scope for improvement particularly in mak-

ing the vision API more tolerant to noise and formatting variations

in documents. Another direction worth pursuing in this context

is to synthesize programs that are template invariant such that a

part of the program is a template identifier. This would of course re-

quire incorporation of certain template specific rules in our current

framework. Even with this minor limitation, our system is highly

robust and scalable to large-scale industrial applications. Finally,

we have also begun applying the same approach for very different

document types, such as engineering drawings.

REFERENCES
[1] Weronika T Adrian, Nicola Leone, Marco Manna, and Cinzia Marte. 2017. Docu-

ment Layout Analysis for Semantic Information Extraction. In Conference of the
Italian Association for Artificial Intelligence. Springer, 269–281.

[2] Michael Bain and Ashwin Srinivasan. 2018. Identification of biological transition

systems using meta-interpreted logic programs. Machine Learning 107, 7 (2018),

1171–1206.

[3] Evgeniy Bart and Prateek Sarkar. 2010. Information extraction by finding repeated

structure. In Proceedings of the 9th IAPR International Workshop on Document
Analysis Systems. ACM, 175–182.

[4] Dr Ciravegna et al. 2001. Adaptive information extraction from text by rule

induction and generalisation. (2001).

[5] Wang-Zhou Dai, Stephen Muggleton, Jing Wen, Alireza Tamaddoni-Nezhad, and

Zhi-Hua Zhou. 2017. Logical vision: One-shot meta-interpretive learning from

real images. In International Conference on Inductive Logic Programming. Springer,
46–62.

[6] Wang-Zhou Dai, Stephen H Muggleton, and Zhi-Hua Zhou. 2015. Logical Vi-

sion: Meta-Interpretive Learning for Simple Geometrical Concepts.. In ILP (Late
Breaking Papers). 1–16.

[7] Yasuto Ishitani. 2001. Model based information extraction and its application

to document images. In Workshop on document layout interpretation and its
applications, DLIA.

[8] Markus Junker, Michael Sintek, and Matthias Rinck. 1999. Learning for text

categorization and information extraction with ILP. In International Conference
on Learning Language in Logic. Springer, 247–258.

[9] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura,

Lluis Gomez i Bigorda, Sergi Robles Mestre, Joan Mas, David Fernandez Mota,

Jon Almazan Almazan, and Lluis Pere De Las Heras. 2013. ICDAR 2013 robust

reading competition. In Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on. IEEE, 1484–1493.

[10] Smadar T Kedar-Cabelli and L Thorne McCarty. 1987. Explanation-based gener-

alization as resolution theorem proving. In Proceedings of the fourth international
workshop on machine learning. Elsevier, 383–389.

[11] Iuliu Konya. 2012. Adaptive methods for robust document image understanding.

(2012).

[12] Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B Tenenbaum, and Stephen H

Muggleton. 2014. Bias reformulation for one-shot function induction. (2014).

[13] EricMedvet, Alberto Bartoli, and Giorgio Davanzo. 2011. A probabilistic approach

to printed document understanding. International Journal on Document Analysis
and Recognition (IJDAR) 14, 4 (2011), 335–347.

[14] R Mooney. 1999. Relational learning of pattern-match rules for information

extraction. In Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence, Vol. 334.

[15] Stephen Muggleton and Luc De Raedt. 1994. Inductive logic programming:

Theory and methods. The Journal of Logic Programming 19 (1994), 629–679.

[16] Stephen H Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-

Nezhad. 2014. Meta-interpretive learning: application to grammatical inference.

Machine learning 94, 1 (2014), 25–49.

[17] Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. 2015.

Meta-interpretive learning of higher-order dyadic datalog: Predicate invention

revisited. Machine Learning 100, 1 (2015), 49–73.

[18] Dário Augusto Borges Oliveira and PM Viana. [n. d.]. Fast CNN-based document

layout analysis. In IEEE Conference on Computer Vision and Pattern Recognition.
1173–1180.

[19] Gordon D Plotkin. 2004. The origins of structural operational semantics. The
Journal of Logic and Algebraic Programming 60 (2004), 3–15.

[20] Rohit Rahul, Gunjan Sehgal, Arindam Chowdhury, Monika Sharma, Lovekesh

Vig, Gautam Shroff, Ashwin Srinivasan, et al. 2018. Deep Reader: Information

extraction from Document images via relation extraction and Natural Language.

arXiv preprint arXiv:1812.04377 (2018).

[21] Ganesh Ramakrishnan, Sachindra Joshi, Sreeram Balakrishnan, and Ashwin

Srinivasan. 2007. Using ilp to construct features for information extraction from

semi-structured text. In International Conference on Inductive Logic Programming.
Springer, 211–224.

[22] Rizlene Raoui-Outach, Cecile Million-Rousseau, Alexandre Benoit, and Patrick

Lambert. 2017. Deep Learning for automatic sale receipt understanding. In

Image Processing Theory, Tools and Applications (IPTA), 2017 Seventh International
Conference on. IEEE, 1–6.

[23] Marçal Rusinol, Tayeb Benkhelfallah, and Vincent Poulain dAndecy. 2013. Field

extraction from administrative documents by incremental structural templates.

In Document Analysis and Recognition (ICDAR), 2013 12th International Conference
on. IEEE, 1100–1104.

9

[24] Daniel Schuster, Klemens Muthmann, Daniel Esser, Alexander Schill, Michael

Berger, Christoph Weidling, Kamil Aliyev, and Andreas Hofmeier. 2013. Intellix–

End-User Trained Information Extraction for Document Archiving. In Document
Analysis and Recognition (ICDAR), 2013 12th International Conference on. IEEE,
101–105.

[25] Stephen Soderland. 1999. Learning information extraction rules for semi-

structured and free text. Machine learning 34, 1-3 (1999), 233–272.

[26] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. 2016. Detecting text in

natural image with connectionist text proposal network. In European conference
on computer vision. Springer, 56–72.

[27] Joost Van Beusekom, Faisal Shafait, and Thomas M Breuel. 2008. Document signa-

ture using intrinsic features for counterfeit detection. In International Workshop
on Computational Forensics. Springer, 47–57.

[28] Yufei Wang. 2017. Deep Learning for Image Understanding. University of Califor-

nia, San Diego.

[29] Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, and Aditya

Parameswaran. 2018. Accelerating Human-in-the-loop Machine Learning: Chal-

lenges and Opportunities. arXiv preprint arXiv:1804.05892 (2018).

10

A SUPPLEMENTARY MATERIAL
A.1 Computer Vision Components of the

VisionAPI
Besides the identification of the textual entitiesmentioned in section

3, we also perform the following additional visual pre-processing.

A.1.1 Image Alignment. To correct for documents that were imper-

fectly aligned, we detect the bounding box around all of the high

intensity pixels in the image and correct for any angular shift

A.1.2 Image De-Noising. We also address the issue of degradation

in quality of images due to camera shake, improper focus, imaging

noise, coffee stains, wrinkles, low resolution, poor lighting, or re-

flections. These kind of problems drastically affect the performance

of many computer vision algorithms like text detection, OCR and

localization. The objective here is to reconstruct high-quality im-

ages directly from noisy inputs and also to preserve the highly

structured data in the images. We do this via an impementation of

cylic GANs, details of which may be found in [20].

A.1.3 VisionAPISchema. Once all the entities are identified as men-

tioned in section 3, relations between the entities need to be popu-

lated and stored in the database. So a schema should be designed

to facilitate information extraction. All the entities are associated

with their spatial coordinates and this information conveys the

whereabouts of the neighbouring text entities. This information is

then used to infer different logical and spatial relationships.

Figure 6 shows the representation of this schema populated in

the database after the relevant relationships have been extracted

from the raw image. The main entities of the schema includes

words, lines, text blocks, boxes and tables. The inter and intra entity

relationships have been illustrated by the directions of the arrow.

The schema may get richer over time, we have only highlighted

the entities that are useful for scanned document images at the

moment.

Figure 6: VisionAPI Schema

A.2 Correctness of Program Synthesis
Given the definitionTd of a transition system as in Remark 3.3; a set

of clauses B; and ground terms i,o. Let t1, t2, . . . , tk denote trans/3

literals in a meta-interpretive proof for ts((i,o)). For simplicity, we

will assume that the ti are ground (in general, they may contain

existentially-quantified variables, and a Skolemisation step will be

needed for what follows). Then, from the properties of the meta-

interpreter and SLD-resolution we know B∧Td |= (t1∧t2∧· · ·∧tk).
Let G : ts((i,o))← t1, t2, . . . , tk be a ground clause. Then from the

semantics of modus ponens, it follows that B ∧ G |= ts((i,o)). G
is called a ground explanation for ts(i,o)). Let H be a clause that

θ -subsumesG . It follows from the properties of θ -subsumption that

B ∧ H |= ts((i,o)). H is called a generalized explanation for ts(i,o)).

A.3 Extract of Prolog code for the deductive
reasoning module

MIP(D):- % finds all possible programs with depth D
clean_up,
set(cwa,true), %flag - ignore
example(pos,Name,_,[Si,Sf]), % training example
MIP_do((Si,Sf),Name,D),
fail.

MIP(_,_).

MIP_do(S,Name,DepthBound):-
S = (Input,Output),
cts(S,DepthBound,Trace),
% prove transition for example
trace_to_func(S,Name,Trace,Func), % generalization step
check_soundness(Name,Input,Func),
% check that program derives other examples
check_completeness(Name,_,Func),
% check that program derives nothing else
update_cache(Func). % store the program in a cache

% depth-bounded transition system
cts((S,S),D,[]):- D >= 0.
cts((Si,Sf),D,[trans(T,Si,S)|Rest]):-

D >= 1,
D1 is D - 1,
transition(T), % domain transition
trans(T,Si,S),
cts((S,Sf),D1,Rest).

11

	Abstract
	1 Introduction
	2 Neural Learning: Image Database
	2.1 Visual detection and recognition
	2.2 Identification of Primitive Relations

	3 Deduction: Database Programs
	4 One-shot Learning: Noisy Cloning
	4.1 Entity extraction

	5 Results
	6 Performance Analysis
	6.1 Effect of training size
	6.2 Error analysis

	7 Related Work
	8 Conclusion
	References
	A Supplementary Material
	A.1 Computer Vision Components of the VisionAPI
	A.2 Correctness of Program Synthesis
	A.3 Extract of Prolog code for the deductive reasoning module

