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ABSTRACT
Disfluency detection and classification on children’s speech
has a great potential for teaching reading skills. Word-level
assessment of children’s speech can help teachers to effec-
tively gauge their students’ progress. Hence, we propose a
novel attention-based model to perform word-level disflu-
ency detection and classification in a fully end-to-end (E2E)
manner making it fast and easy to use. We develop a word-
level disfluency annotation scheme using which we annotate
a dataset of children read speech, the reading races dataset
(READR). We also annotate disfluencies in the existing CMU
Kids corpus. The proposed model significantly outperforms
traditional cascaded baselines, which use forced alignments,
on both datasets. To deal with the inevitable class-imbalance
in the datasets, we propose a novel technique called HiDeC
(Hierarchical Detection and Classification) which yields a
detection improvement of 23% and 16% and a classification
improvement of 3.8% and 19.3% relative F1-score on the
READR and CMU Kids datasets respectively.

Index Terms— disfluency detection, attention-based
models, children’s speech, mispronunciation detection

1. INTRODUCTION

Many modern day deep learning based computer-aided pro-
nunciation training (CAPT) tools operate at the phonologi-
cal level. These approaches predict the phoneme sequence of
a mispronounced utterance [1, 2, 3, 4]. A correct diagnosis
constitutes the case when the predicted phoneme is the same
as the human transcribed phoneme which in turn is different
from the canonical phoneme. In reading assessment for chil-
dren, it can be difficult and time consuming for a teacher to
analyze phone-level predictions for each individual child.

An easy way to assist teachers in correcting children’s
disfluencies is to get disfluency categories at the word level.
Having a finite set of disfluency categories over a child’s
vocabulary helps in identifying words where a child needs
help. An approach by Black et al. [5] follows this route, but
requires that the word boundaries be known in advance for
training a classifier. This is done by having the children read
one word only instead of fluent readings of paragraphs. In
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this paper, we explore ways to classify disfluent words in a
continuous stream of read passage where word boundaries
are not known in advance. For this, we annotate two datasets
of children’s speech with word level disfluency tags. These
are the reading races (READR) corpus [6] and the CMU Kids
corpus [7] which are recordings of children reading passages.

It is also important to make these models as streamlined
and robust as possible. Approaches by Proencca et al. [8] and
Duchateau et al. [9] use automatic speech recognition (ASR)
to get transcripts for children’s speech and then analyse these
to determine the presence of disfluencies. This approach re-
quires constructing grammar structures which might not be
very robust and do not allow for diverse categories of error
types. In this work, we propose a fully end-to-end (E2E)
model which operates on speech directly to classify spoken
words. In particular, we adapt the attention-based listen, at-
tend and spell (LAS) model [10] for this purpose. The cross-
modal attention mechanism in the LAS model serves as a nat-
ural choice for extracting relevant speech segments.

A major challenge in developing a machine learning
model that operates on a finite set of disfluency classes is the
high degree of class imbalance [11] as only a small fraction
of a child’s vocabulary actually has disfluencies. We ex-
plore two different techniques to address this issue. The first
is the recently proposed major feature weakening strategy
[12] which scales gradients of the majority class by injecting
noise into it’s features. The second is a novel proposal which
we call HiDeC (Hierarchical Detection and Classification)
which reduces the degree of class imbalance by training one
classifier only to detect disfluencies and a second classifier
to classify the type of disfluency. The second classifier is
only trained on disfluent examples. We show that HiDeC
deals with the catastrophic effects of class imbalance to a
substantial degree. In the disfluency detection task, HiDeC
yields a relative improvement of 23% and 16% F1-score on
the READR and CMU Kids corpus. In the disfluency clas-
sification task, we get a relative improvement of 3.8% and
19.3% F1-score on the two datasets using HiDeC.

2. DATASETS AND ANNOTATION

We annotate two datasets of children’s disfluent speech.
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Fig. 1. Label distribution in the CMUK and READR datasets.
Label frequency is shown in y-axis in the log scale.

Reading Races (READR) [6]: This is a 15-hour corpus of
speech data consisting of one-minute audio clips of children
of ages 5 to 8. This dataset has audio from children who have
reading difficulties owing to various factors, making it a very
challenging dataset. The children are asked to read an english
passage in the supervision of a teacher who assists them.
CMU Kids (CMUK) [7]: This is a 9 hour corpus of speech
data comprising of sentences read by children aging from 6 to
11 years old. It consists of 24 male and 52 female speakers.
We are releasing the annotation for this dataset1.

Each word in the read passage is assigned one of the following
7 disfluency categories given the corresponding speech:
Repeat - A word is uttered more than once. Eg: “...every
every every day...”, the word “every” is labeled as a “Repeat”.
Incorrect - An uttered word does not match the actual word.
Eg: “...get her the mason...”, the word “medicine”, incorrectly
pronounced as “mason”, will be labeled “Incorrect”.
False start - Syllables in a word are repeated. Eg: “...car will
not st st start....”, “start” will be labeled as “False start”.
Skip - The speaker omits a word while reading the sentence.
Eg: Uttered: “...she a lot of fun...”. Actual: “...she had a lot
of fun...”. The word “had” will be labeled as “Skip”.
Prompt - When a child is struggles to pronounce a word,
the teacher intervenes and pronounces the word in the back-
ground which is captured in the audio. Such words are la-
belled as “Prompt”. This label is only present in the READR
dataset as it is collected in the presence of a teacher.
Tracking - The child loses track of the sentence they are read-
ing. Eg: Uttered: “...I came home and Saturday...”. Actual:
“...I came home and saw...Today is a Saturday...”. The words
from “and” till “a” will be labeled as “Tracking”.
Correct - The rest of the uttered words that do not fall under
the previous 6 classes will be labeled as “Correct”.

The READR dataset was annotated manually with these
classes. The CMUK dataset, on the other hand, already con-
tained generic remarks on the mispronunciations and disflu-

1https://github.com/OSU-slatelab/Annotating_CMUK
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Fig. 2. Model Overview. Left: Pretraining follows the LAS
ASR setup [10]. Right: Proposed HiDeC framework. The
pretrained model is adapted to perform hierarchical detection
and classification by adding two LSTMs on top of the speller.

encies in each of the speech data instances. We transformed
these remarks into the above-mentioned classes.

The distribution of classes in the two datasets is shown
in figure 1. Note that most words in the datasets are marked
as correctly pronounced which means that only a small frac-
tion of the words contain disfluencies. This makes the dataset
highly class-imbalanced due to the number of correct labels
being orders of magnitude higher than other labels.

Given the speech signal and the canonical transcript, we
try to solve two related tasks.
Disfluency Detection: This is a binary classification problem
where the task is to detect whether a disfluency is present or
not for each word in the canonical transcript given the speech.
Disfluency Classification: This is a 7-class classification
problem which unlike detection is more fine-grained in that
we need to predict the actual class of the disfluency present
in each word of the canonical transcript given the speech.

3. MODEL OVERVIEW

Unlike the traditional ASR task, where canonical transcripts
are only used during training, ours is a reading assessment
task where canonical transcripts are available at test time also.
At test time, we use the available text to extract speech sec-
tions corresponding to words and classify these into disflu-
ency classes. A natural choice for building an E2E reading
assessment system is to use attention-based models. These
models have the advantage that the explicit attention mech-
anism produces attention weights over relevant parts of the
speech signal corresponding to the given word units. Learn-
ing how to attend over speech given the text can be effectively
done by pretraining an attention based ASR model.

3.1. Pretraining

We pretrain a Listen-Attend-Spell (LAS) [10] based ASR
model on 960 hours of Librispeech data [13] prior to using it



for disfluency detection and classification. A speech encoder
extracts a sequence of speech features which are attended to
by the previously predicted context to predict the next token
in an auto-regressive manner. Given the speech, X and the
context {yi−1, yi−2, ..., y0}, we compute the the ASR loss as,

LASR = −log(P(yi|yi−1, yi−2, ..., y0,X))

We model this following Tüske et al. [14] but using a unidi-
rectional LSTM so that our model can be used in real-time.

3.2. Finetuning

To the pretrained model, we cascade LSTMDCT/CLS on top
of the speller LSTM to extract word level features for detec-
tion/classification. If the output of the speller is a sequence
xASR of length T , then the prediction is computed as,

x = LSTMDCT/CLS(xASR)

P(.|xt) = softmax(Wxt + b)

Here, x = (x1, ..., xT ) is the output sequence which is passed
to a single classification layer with weights W and b. Then,
the detection/classification loss is computed as,

LDCT/CLS = − 1

T

T∑
t=1

log(P(yt|xt))

Here, yt is the ground-truth label for the representation xt. To
help with the adaptation to the new speech domain, we add
the in-domain ASR loss to the above loss,

LMTL = LDCT/CLS + LASR

As the datasets are highly class-imbalanced, we incorpo-
rate two different techniques to the above framework.

Major feature weakening (MFW): This technique was in-
troduced by Ye et al. [12] and proposes to prevent overfitting
by adding noise to the majority training feature by interpolat-
ing between two data points in a batch during training. This
scales the gradients for majority features such that the training
is balanced for all classes. For a given data point x with label
y, we sample a random data point x̃ from the batch. Then,

MFW(x) = (1− λ)x + λx̃
λ ∈ (0.0, 0.5] and λ ∝ Ny

where Ny is the frequency of label y in the dataset. λ can
be sampled using any policy provided it follows the above
constraints. We followed the same policy as Ye et al. [12].

Hierarchical detection and classification (HiDeC): While
MFW deals with the issue of class imbalance to some extent,
we further improve performance by co-training the model

to perform detection and classification together in a hierar-
chical manner (see figure 2). First, the detection module,
LSTMDCT predicts whether a disfluency was present in the
word or not, then, if a disfluency was present, LSTMCLS

classifies the type of disfluency. Formally,

xDCT = MFW(LSTMDCT (xASR))

xCLS = MFW(LSTMCLS(xDCT ))

P(.|xDCT
t ) = softmax(WDCTxDCT

t + bDCT )

P(.|xCLS
t ) = softmax(WCLSxCLS

t + bCLS)

Here, P(.|xDCT
t ) is the probability whether a disfluency is

present in a word or not and P(.|xCLS
t ) is the distribution over

the possible set of disfluency classes. The detection and clas-
sification losses are then computed as,

LDCT = − 1

T

T∑
t=1

log(P(yDCT
t |xDCT

t ))

LCLS = − 1

T

T∑
t=1

log(P(yCLS
t |xCLS

t ))

Here, yDCT
t is 1 if a disfluency is present in the word other-

wise it is 0. yCLS
t is the actual disfluency class. The final loss,

LHiDeC = LDCT + LCLS + LASR.
During training, LCLS is set to 0 for cases where disflu-

ency is not present. Thus, LSTMCLS is trained only on disflu-
ent examples. At test time, an instance is first passed through
LSTMDCT and only if it is predicted to have disfluencies, it
is passed on to LSTMCLS to predict the actual class.

This type of training has the advantage that the class-
imbalance is explicitly reduced for the classification task.
As the lower level LSTM is already tasked with predicting
whether the word was fluent, the upper level LSTM never
needs to see the fluent cases (the major contibutor to class
imbalance) during training resulting in balanced training.

4. EXPERIMENTS AND RESULTS

As the size of the READR and CMUK datasets is small, we
perform a 5-fold cross-validation on both these datasets.

The results are reported in table 1. Row (1) is a trivial
baseline predicting everything as “correct”. This acts as the
lower bound for the highly skewed datasets. In row (2), we try
to match two word segment based models proposed in liter-
ature for disfluency detection as closely as possible. Specifi-
cally, Lea et al. [15] extract 3 second audio clips and annotate
them with different stutter classes. Each audio segment is fed
to a neural speech encoder for classification. Models in Black
et al. [5] also work at the word level. To build a compara-
ble setup, we run the Montreal Forced Aligner (MFA) [16] to
get word boundaries in the children’s speech. Speech seg-
ments corresponding to these boundaries are extracted and



fed to the ASR-pretrained speech encoder in section 3 for
the task of disfluency detection and classification. Row (3)
shows results from the recently proposed model by Jouaiti et
al. [17]. This model uses phonological class posterior prob-
abilities and the predicted phoneme sequence, extracted from
the “Phonet” pretrained model [18], for an audio segment as
features for a downstream classifier. Again, we use the MFA
to extract the said audio segments.

The baseline results indicate a much lower performance
compared to our E2E setup. One of the reasons that we no-
tice is that forced alignment operations can be detrimental for
children’s speech whose quality is very different from flu-
ent adult speech used to build the acoustic models used in
MFA. However, to use a streamlined cascaded setup that ex-
tracts word boundaries prior to performing classification, us-
ing an off-the-shelf forced aligner like MFA is inevitable. An-
other reason that cascaded models do not work well is that
some of the disfluency categories like “repeat” and “skip”
need the spoken context to be identified which only a con-
tinuous stream of audio can provide.

The last 3 rows in table 1 show performances of our pro-
posed models. The E2E models outperform the cascaded
baselines by a significant margin. Row (4) represents the
multi-task learning framework defined in section 3.2. We see
a significant improvement in detection performance just by
using LMTL compared to the cascaded baselines. This shows
that the attention based E2E model is successful in extracting
the relevant speech segments corresponding to the words. We
also see an improvement in the classification performance but
it is not as much as the gains seen in detection. This can be
attributed to the small size of the datasets which consequently
leads to smaller number of examples in each class.

With MFW, we see gains in the performance on the two
datasets and on both tasks as shown in row (5). However, us-
ing the proposed HiDeC model, we see the most significant
improvements across the board. Classification improves as
the information from the lower level detection module helps
the classification module on top by filtering only the disfluent
cases. Having the classification loss at the top level backprop-
agate through the lower network also helps detection.

Note that the classification performance of all models on
the READR dataset is not very good with the best model
reaching only 27.6% F1 score. This shows the difficulty of
the task and leaves room for much improvement. Also, the
lower results are consistent with the findings of Yang et al.
[11] who encounter a similar issue of class imbalance for a
similar task at the phone level. To tackle the possible acous-
tic mismatch between the Librispeech and READR datasets,
we tried varying the pitch of female voices in the Librispeech
corpus to mimic children voices and reduce the mismatch. In-
terestingly, it ended up hurting the performance. We note that
this is because the readers are children with substantial read-
ing difficulties and hence their speech is hard to process.
Ablation study: Table 2 shows an ablation study on the

READR CMUK

Model Detection Classification Detection Classification

(1) All correct 0.0 14.3 0.0 18.0

Previous work

(2) Word segment based [5, 15] 13.2 16.3 19.7 22.7
(3) Phonological [17] 0.0 14.3 4.6 18.4

End-to-End (ours)

(4) LMTL 34.6 24.8 34.4 32.0
(5) + MFW 34.8 26.6 38.3 32.6
(6) LHiDeC 42.8 27.6 44.4 38.9

Table 1. Results (in macro F1-score) on READR and CMUK
datasets. Row (1): a trivial baseline which predicts “correct”
every time. Rows (2), (3): the traditional cascaded baselines
using forced alignment. Rows (4)-(6): our proposed methods.

READR

Model Detection Classification

No ASR pretraining

(1) LDCT/CLS 21.6 18.5

ASR pretraining

(2) LDCT/CLS 28.0 22.7
(3) + LASR 34.6 24.8

Table 2. Ablation studies on the READR dataset. Row (1):
results without ASR pretraining. Rows (2), (3): with ASR
pretraining, progressively adding the proposed techniques.

READR dataset to see the effect of each component on our
proposed models. ASR pretraining proves to be an important
step for the downstream task when we compare row (1) with
the rest. Row (2) shows the results for the case when the ASR
task is not performed along with detection/classification and
we just use the loss, LDCT/CLS . We see a lower performance
compared to row (3) which adds the ASR loss. This shows
that the ASR component serves as an effective co-training
mechanism possibly assisting in acoustic model adaptation.

5. CONCLUSION

In this paper, we propose an end-to-end framework for word
level disfluency classification in children’s speech. We anno-
tate two datasets for word level disfluency categories. To deal
with the high degree of class imbalance in the two datasets,
we propose a novel technique called HiDeC for hierarchical
detection and classification which implicitly lowers the class
imbalance by breaking the classification task into two hier-
archical parts. We hope that this paper prompts future work
towards collecting more children’s speech datasets for build-
ing robust reading assessment models.
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